This time we’ll learn Haskell in one video. This has been the most requested language and since I’ve been working on a project with it I thought I’d make the most all encompassing Haskell tutorial online.
I cover Installation, Data Types, Math Functions, :t, Lists, : Operator, Head / Tail, !! Operator, Take, Elem, Creating Ranges, Cycle, Filter, ZipWith, TakeWhile, Foldl, List Comprehensions, Tuples, Zip, Functions, Compiling, Type Declarations, Recursive Functions, Guards, Where, (x:y), As, Higher Order Functions, Map, (x:xs), Passing a Function into a Function, Returning a Function, Lambda, If, Case, Modules, Enumerations, Polymorphic Types, $ Operator, . Operator, Type Classes, Type Instance, Custom Typeclass, File I/O, Fibonacci Sequence and more.
If you like videos like this, it helps to tell Google with a click here [googleplusone]
Cheat Sheet From the Video
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 |
-- Haskell is a functional programming language -- Everything is immutable so once a value is set it is set forever -- Functions can be passed as a parameter to other functions -- Recursion is used often -- Haskell has no for, while, or technically variables, but it does have -- constants -- Haskell is lazy in that it doesn't execute more then is needed and instead -- just checks for errors -- Best Free Haskell Book -- http://learnyouahaskell.com/chapters -- Type ghci to open it up in your terminal -- Load script with :l haskelltut -- :quit exits the GHCi -- Import a module import Data.List import System.IO {- Beginning of multiline comment -} -- ---------- DATA TYPES ---------- -- Haskell uses type inference meaning it decides on the data type based on the -- value stored in it -- Haskell is statically typed and can't switch type after compiling -- Values can't be changed (Immutable) -- You can use :t in the terminal to get the data type (:t value) -- Int : Whole number -2^63 - 2^63 -- :: Int defines that maxInt is an Int maxInt = maxBound :: Int minInt = minBound :: Int -- Integer : Unbounded whole number -- Float : Single precision floating point number -- Double : Double precision floating point number (11 pts precision) bigFloat = 3.99999999999 + 0.00000000005 -- Bool : True or False -- Char : Single unicode character denoted with single quotes -- Tuple : Can store a list made up of many data types -- You declare the permanent value of a variable like this always5 :: Int always5 = 5 -- ---------- MATH ---------- -- Something crazy to start sumOfVals = sum [1..1000] addEx = 5 + 4 subEx = 5 - 4 multEx = 5 * 4 divEx = 5 / 4 -- mod is a prefix operator modEx = mod 5 4 -- With back ticks we can use it as an infix operator modEx2 = 5 `mod` 4 -- Negative numbers must be surrounded with parentheses negNumEx = 5 + (-4) -- If you define an Int you must use fromIntegral to use it with sqrt -- :t sqrt shows that it returns a floating point number num9 = 9 ::Int sqrtOf9 = sqrt (fromIntegral num9) -- Built in math functions piVal = pi ePow9 = exp 9 logOf9 = log 9 squared9 = 9 ** 2 truncateVal = truncate 9.999 roundVal = round 9.999 ceilingVal = ceiling 9.999 floorVal = floor 9.999 -- Also sin, cos, tan, asin, atan, acos, sinh, tanh, cosh, asinh, atanh, acosh trueAndFalse = True && False trueOrFalse = True || False notTrue = not(True) -- Remember you use :t in the terminal to get the data type (:t value) -- You can also see how functions use data types with :t -- :t (+) = Num a => a -> a -> a -- Type a is in the type class num, we receive 2 of them and return 1 -- :t truncate = (RealFrac a, Integral b) => a -> b -- ---------- LISTS ---------- -- Lists are singly linked and you can only add to the front of it -- Lists store many elements of the same type primeNumbers = [3,5,7,11] -- Concatenate lists (Can be slow if your using a large list) morePrimes = primeNumbers ++ [13,17,19,23,29] -- You can use the cons operator to construct a list favNums = 2 : 7 : 21 : 66 : [] -- You can make a list of lists multList = [[3,5,7],[11,13,17]] -- Quick way to add 1 value to the front of a list morePrimes2 = 2 : morePrimes -- Get number of elements in the list lenPrime = length morePrimes2 -- Reverse the list revPrime = reverse morePrimes2 -- return True if list is empty isListEmpty = null morePrimes2 -- Get the number in index 1 secondPrime = morePrimes2 !! 1 -- Gets the 1st value in a list firstPrime = head morePrimes2 -- Gets the last value lastPrime = last morePrimes2 -- Gets everything but the first value primeTail = tail morePrimes2 -- Gets everything but the last value primeInit = init morePrimes2 -- Get specified number of elements from the front of a list first3Primes = take 3 morePrimes2 -- Return values left after removing specified values removedPrimes = drop 3 morePrimes2 -- Check if value is in list is7InList = 7 `elem` morePrimes2 -- Get max value maxPrime = maximum morePrimes2 -- Get minimum value minPrime = minimum morePrimes2 -- Sum values in list sumPrimes = sum morePrimes2 -- Get product of values in list (Value all can evenly divide by) newList = [2,3,5] prodPrimes = product newList -- Create list from 0 to 10 zeroToTen = [0..10] -- Create list of evens by defining the step between the first 2 values evenList = [2,4..20] -- You can use letters as well letterList = ['A','C'..'Z'] -- You can generate an infinite list and Haskell will only generate what you -- need infinPow10 = [10,20..] -- repeat repeats a value a defined number of times many2s = take 10 (repeat 2) -- replicate generates a value a specified number of times many3s = replicate 10 3 -- cycle replicates the values in a list indefinitely cycleList = take 10 (cycle [1,2,3,4,5]) -- You could perform operations on all values in a list -- Cycle through the list storing each value in x which is multiplied by 2 and -- then stored in a new list listTimes2 = [x * 2 | x <- [1..10]] -- We can filter the results with conditions listTimes3 = [x * 3 | x <- [1..20], x*3 <= 50] -- Return all values that are divisible by 13 and 9 divisBy9N13 = [x | x <- [1..500], x `mod` 13 == 0, x `mod` 9 == 0] -- Sort a list sortedList = sort [9,1,8,3,4,7,6] -- zipwith can combine lists using a function sumOfLists = zipWith (+) [1,2,3,4,5] [6,7,8,9,10] -- Filter returns a list of items that match a condition listBiggerThen5 = filter (>5) sumOfLists -- takeWhile returns list items until the condition is false evensUpTo20 = takeWhile (<=20) [2,4..] -- foldl applies the operation on each item of a list -- foldr applies these operations from the right multOfList = foldl (*) 1 [2,3,4,5] -- ---------- LIST COMPREHENSION ---------- -- We can generate a list from 1 to 10 to the power of 3 pow3List = [3^n | n <- [1..10]] -- We can filter the results to only show values divisible by 9 pow3ListDiv9 = [3^n | n <- [1..10], 3^n `mod` 9 == 0] -- Generate a multiplication table by multiplying x * y where y has the values -- 1 through 10 and where x does as well multTable = [[x * y | y <- [1..10]] | x <- [1..10]] -- ---------- TUPLES ---------- -- Stores list of multiple data types, but has a fixed size randTuple = (1,"Random tuple") -- A tuple pair stores 2 values bobSmith = ("Bob Smith",52) -- Get the first value bobsName = fst bobSmith -- Get the second value bobsAge = snd bobSmith -- zip can combine values into tuple pairs names = ["Bob","Mary","Tom"] addresses = ["123 Main","234 North","567 South"] namesNAddress = zip names addresses -- ---------- FUNCTIONS ---------- -- ghc --make haskelltut compiles your program and executes the main function -- Functions must start with lowercase letters -- We can define functions and values in the GHCi with let -- let num7 = 7 -- let getTriple x = x * 3 -- getTriple num7 = 21 -- main is a function that can be called in the terminal with main main = do -- Prints the string with a new line putStrLn "What's your name: " -- Gets user input and stores it in name -- <- Pulls the name entered from an IO action name <- getLine putStrLn ("Hello " ++ name) -- Create function addMe -- x is a parameter and the operation follows the equals sign -- The data type passed in will work if it makes sense -- Every function must return something -- A function name can't begin with a capital letter -- A function that doesn't receive parameters is called a definition or name -- You can define a type declaration for functions -- funcName :: param1 -> param2 -> returnType addMe :: Int -> Int -> Int -- funcName param1 param2 = operations (Returned Value) -- Execute with : addMe 4 5 addMe x y = x + y -- Without type declaration you can add floats as well sumMe x y = x + y -- You can also add tuples : addTuples (1,2) (3,4) = (4,6) addTuples :: (Int, Int) -> (Int, Int) -> (Int, Int) addTuples (x, y) (x2, y2) = (x + x2, y + y2) -- You can perform different actions based on values whatAge :: Int -> String whatAge 16 = "You can drive" whatAge 18 = "You can vote" whatAge 21 = "You're an adult" -- The default whatAge x = "Nothing Important" -- Define that we expect an Int in and out factorial :: Int -> Int -- If 0 return a 1 (Recursive Function) factorial 0 = 1 factorial n = n * factorial (n - 1) -- 3 * factorial (2) : 6 -- 2 * factorial (1) : 2 -- 1 * factorial (0) : 1 -- You could also use product to calculate factorial productFactorial n = product [1..n] -- We can use guards that provide different actions based on conditions isOdd :: Int -> Bool isOdd n -- if the modulus using 2 equals 0 return False | n `mod` 2 == 0 = False -- Else return True | otherwise = True -- This could be shortened to isEven n = n `mod` 2 == 0 -- Use guards to define the school to output whatGrade :: Int -> String whatGrade age | (age >= 5) && (age <= 6) = "Kindergarten" | (age > 6) && (age <= 10) = "Elementary School" | (age > 10) && (age <= 14) = "Middle School" | (age > 14) && (age <= 18) = "High School" | otherwise = "Go to college" -- The where clause keeps us from having to repeat a calculation batAvgRating :: Double -> Double -> String batAvgRating hits atBats | avg <= 0.200 = "Terrible Batting Average" | avg <= 0.250 = "Average Player" | avg <= 0.280 = "Your doing pretty good" | otherwise = "You're a Superstar" where avg = hits / atBats -- You can access list items by separating letters with : or get everything but -- the first item with xs getListItems :: [Int] -> String getListItems [] = "Your list is empty" getListItems (x:[]) = "Your list contains " ++ show x getListItems (x:y:[]) = "Your list contains " ++ show x ++ " and " ++ show y getListItems (x:xs) = "The first item is " ++ show x ++ " and the rest are " ++ show xs -- We can also get values with an As pattern getFirstItem :: String -> String getFirstItem [] = "Empty String" getFirstItem all@(x:xs) = "The first letter in " ++ all ++ " is " ++ [x] -- ---------- HIGHER ORDER FUNCTIONS ---------- -- Passing of functions as if they are variables times4 :: Int -> Int times4 x = x * 4 -- map applies a function to every item in the list listTimes4 = map times4 [1,2,3,4,5] -- Let's make map multBy4 :: [Int] -> [Int] multBy4 [] = [] -- Takes the 1st value off the list x, multiplies it by 4 and stores it in the -- new list -- xs is then passed back into multBy4 until there is nothing left of the list -- to process (Recursion) multBy4 (x:xs) = times4 x : multBy4 xs -- Check if strings are equal with recursion areStringsEq :: [Char] -> [Char] -> Bool areStringsEq [] [] = True areStringsEq (x:xs) (y:ys) = x == y && areStringsEq xs ys areStringsEq _ _ = False -- PASSING A FUNCTION INTO A FUNCTION -- (Int -> Int) says we expect a function that receives an Int and returns an -- Int doMult :: (Int -> Int) -> Int -- We receive the function and pass 3 into it doMult func = func 3 -- We pass in the function that multiplies by 4 num3Times4 = doMult times4 -- RETURNING A FUNCTION FROM A FUNCTION getAddFunc :: Int -> (Int -> Int) -- We can pass in the values to the function getAddFunc x y = x + y -- We could also get a function that adds 3 for example adds3 = getAddFunc 3 fourPlus3 = adds3 4 -- We could use this function with map as well threePlusList = map adds3 [1,2,3,4,5] -- ---------- LAMBDA ---------- -- How we create functions without a name -- \ represents lambda then you have the arguments -> and result dbl1To10 = map (\x -> x * 2) [1..10] -- ---------- CONDITIONALS ---------- -- Comparison Operators : < > <= >= == /= -- Logical Operators : && || not -- Every if statement must contain an else doubleEvenNumber y = if (y `mod` 2 /= 0) then y else y * 2 -- We can use case statements getClass :: Int -> String getClass n = case n of 5 -> "Go to Kindergarten" 6 -> "Go to elementary school" _ -> "Go some place else" -- ---------- MODULES ---------- -- You can group functions into modules. I showed previously how to load them -- You can create your own module by creating a file that contains all your -- functions and then list the functions at the top like this -- module SampFunctions (getClass, doubleEvenNumber) where -- They can then be imported with import SampFunctions -- ---------- ENUMERATION TYPES ---------- -- Used when you want a list of possible types -- Provide name, a list and then Show converts into a String for printing data BaseballPlayer = Pitcher | Catcher | Infield | Outfield deriving Show barryBonds :: BaseballPlayer -> Bool barryBonds Outfield = True barryInOF = print(barryBonds Outfield) -- ---------- CUSTOM TYPES ---------- -- You can store multiple values sort of like a struct to create custom types data Customer = Customer String String Double deriving Show -- Define Customer and its values tomSmith :: Customer tomSmith = Customer "Tom Smith" "123 Main St" 20.50 -- Define how we'll find the right customer (By Customer) and the return value getBalance :: Customer -> Double getBalance (Customer _ _ b) = b tomSmithBal = print (getBalance tomSmith) -- We can define a type with all possible values data RPS = Rock | Paper | Scissors shoot :: RPS -> RPS -> String shoot Paper Rock = "Paper Beats Rock" shoot Rock Scissors = "Rock Beats Scissors" shoot Scissors Paper = "Scissors Beat Paper" shoot Scissors Rock = "Scissors Loses to Rock" shoot Paper Scissors = "Paper Loses to Scissors" shoot Rock Paper = "Rock Loses to Paper" shoot _ _ = "Error" -- We could define 2 versions of a type -- First 2 floats are center coordinates and then radius for Circle -- First 2 floats are for upper left hand corner and bottom right hand corner -- for the Rectangle data Shape = Circle Float Float Float | Rectangle Float Float Float Float deriving (Show) -- :t Circle = Float -> Float -> Float -> Shape -- Create a function to calculate area of shapes area :: Shape -> Float area (Circle _ _ r) = pi * r ^ 2 area (Rectangle x y x2 y2) = (abs (x2 - x)) * (abs (y2 -y)) -- Could also be area (Rectangle x y x2 y2) = (abs $ x2 - x) * (abs $ y2 -y) -- $ means that anything that comes after it will take precedence over anything -- that comes before (Alternative to adding parentheses) -- The . operator allows you to chain functions to pass output on the right to -- the input on the left -- sumValue = putStrLn (show (1 + 2)) becomes sumValue = putStrLn . show $ 1 + 2 -- Get area of shapes areaOfCircle = area (Circle 50 60 20) areaOfRectangle = area $ Rectangle 10 10 100 100 -- ---------- TYPE CLASSES ---------- -- Num, Eq, Ord and Show are type classes -- Type classes correspond to sets of types which have certain operations -- defined for them. -- Polymorphic functions, which work with multiple parameter types, define -- the types it works with through the use of type classes -- For example (+) works with parameters of the type Num -- :t (+) = Num a => a -> a -> a -- This says that for any type a, as long as a is an instance of Num, + can take -- 2 values and return an a of type Num -- Create an Employee and add the ability to check if they are equal data Employee = Employee { name :: String, position :: String, idNum :: Int } deriving (Eq, Show) samSmith = Employee {name = "Sam Smith", position = "Manager", idNum = 1000} pamMarx = Employee {name = "Pam Marx", position = "Sales", idNum = 1001} isSamPam = samSmith == pamMarx -- We can print out data because of show samSmithData = show samSmith -- Make a type instance of the typeclass Eq and Show data ShirtSize = S | M | L instance Eq ShirtSize where S == S = True M == M = True L == L = True _ == _ = False instance Show ShirtSize where show S = "Small" show M = "Medium" show L = "Large" -- Check if S is in the list smallAvail = S `elem` [S, M, L] -- Get string value for ShirtSize theSize = show S -- Define a custom typeclass that checks for equality -- a represents any type that implements the function areEqual class MyEq a where areEqual :: a -> a -> Bool -- Allow Bools to check for equality using areEqual instance MyEq ShirtSize where areEqual S S = True areEqual M M = True areEqual L L = True areEqual _ _ = False newSize = areEqual M M -- ---------- I/O ---------- sayHello = do -- Prints the string with a new line putStrLn "What's your name: " -- Gets user input and stores it in name name <- getLine -- $ is used instead of the parentheses putStrLn $ "Hello " ++ name -- File IO -- Write to a file writeToFile = do -- Open the file using WriteMode theFile <- openFile "test.txt" WriteMode -- Put the text in the file hPutStrLn theFile ("Random line of text") -- Close the file hClose theFile readFromFile = do -- Open the file using ReadMode theFile2 <- openFile "test.txt" ReadMode -- Get the contents of the file contents <- hGetContents theFile2 putStr contents -- Close the file hClose theFile2 -- ---------- EXAMPLE : FIBONACCI SEQUENCE ---------- -- Calculate the Fibonacci Sequence -- 1, 1, 2, 3, 5, 8, ... -- 1 : 1 : says to add 2 1s to the beginning of a list -- | for every (a, b) add them -- <- stores a 2 value tuple in a and b -- tail : get all list items minus the first -- zip creates pairs using the contents from 2 lists being the lists fib and the -- list (tail fib) fib = 1 : 1 : [a + b | (a, b) <- zip fib (tail fib) ] -- First time through fib = 1 and (tail fib) = 1 -- The list is now [1, 1, 2] because a: 1 + b: 1 = 2 -- The second time through fib = 1 and (tail fib) = 2 -- The list is now [1, 1, 2, 3] because a: 1 + b: 2 = 3 fib300 = fib !! 300 -- Gets the value stored in index 300 of the list -- take 20 fib returns the first 20 Fibonacci numbers |
Leave a Reply